
Multitasking Domain Decomposition Fast

Poisson Solvers on the Cray Y-MP

Tony F. Chan* Rod A. Fatoohi t

Report RNR-90-005, March 1990

Abstract

We present the resultsof multitasking implementation of a domain

decomposition fastPoisson solveron eight processorsof the Cray Y-MP.

The object of this research is to study the performance of domain de-

composition methods on a Czay supercomputer and to aa/alyzethe per-

formance of difgezentmultitasking techniques using highly parallelalgo-

rithms. Two implementations of multitasking are considered:macrotask-

ing (parallelismat the subroutine level)and microtasking (parallelismat

the do-loop level).A conventional FFT-based fastPoisson solveris also

multitasked. The resultsof diilerentimplementations are compared and

analyzed. A speedup ofoyez 7.4on the Czay Y-MP running in a dedicated

environment is achieved for all cases.

•Department of Mathematics, UCLA, Los Angles, CA 90024. This work was funded in part by
Contract NCC2-387 between NASA and USRA.

tNAS Applied Research Office, NASA Ames, M/S T045-1, Moffett Field, CA 94035. The author
is an employee of Sterling Software. This work was funded in part by NASA Contract NAS2-11555.

1 Introduction

Domain decomposition is a class of numerical algorithms for solving partial differ-

ential equations on a spatial domain by' combining (usually iteratively) solutions

of smaller independent problems on (overlapping or non-overlapping) subdomains.

These methods have received a lot of study recently [1, 5], partially because of their

inherent large-grain parallelism, and appear to ideally fit coarse-grain architectures

with a small to moderate number of powerful processors (such as the Cray ¥-MP).

A fundamental implementation issue is the effect of the communication and synchro-

nization overhead on the overall performance. While a few previous authors have

addressed this issue [3, 6], there is relatively little work on the newCray machines.
Our work here is a preliminary step in this direction.

We chose a simple and yet representative (in terms of globs] communication re-

qnirements) domain decomposition algorithm (a fast Poisson solver [2]) and study its

performance on an eight-processor Cray ¥-MP, implemented with both macrotasking
and microtasking. In addition, a conventional FFT-based solver is also multitasked

and the performance results compared and analyzed. A relative speedup of over 7.4
running in a dedicated environment is achieved for all cases.

2 The Numerical Algorithms

In this section, we briefly describe the Fast Direct Solver (FDS) algorithm, the basic

domain decomposition algorithm (DD) and a more efficient version (DD1). The

domain decomposition algorithms were derived in [2] and we shall skip the derivation

and only present the algorithms in a schematic form sufficient for describing the
macrotasking and microtasking.

An three algorithms are for solving the Poisson equation Au = f on a rectangular

region discretized with a uniform mesh with grid size h and n interior grid points in

the z-direction and m interior grid points in the y-direction. The Poisson equation

is discretized by a standard five point second order difference approximation which

results in a linear system Au = f, where A = trid(I, T, I) is block tridiagonal of size

mn by ran, and T = trid(1, -4,1) is n by n. For the description of the algorithms,

we view u and f as 2D arrays, with the index (j, i) corresponding to the grid point

(z, 7/) = (i • h,j • h). The notation uj. denotes the n-vector (Ujl, ..., uj,) r. Quantities
with " " " denote transformed variables.

It is well known that T can be diagonalized by the sine transform (symmetric

and orthogonal) matrix W, with (W)ij = v/_sin(ij_h). Using a block diagonal

transform with W, we can transform the system Au = f into a set of n independent
tridiagonal systems, from which we obtain the FDS.

Algorithm FDS

1. FFT in z-direction: fj. = W.fj., j = 1 : m

2. 'I_idiagonal Solves in y-direction: fi.i = T(m)-l_.i,

3. FFT in y-direction: uj. = Wfij., j = 1 : m

i=l:n

2

Here, _'(m) is a m by m tridiagonal matrix defined by: T(m) = trid(1,-2 -

a_,1), i = 1 :re, where ai =4sin2(i_h/2) •
For the domain decomposition algorithms, the domain is divided into p subdo-

mains (stripes) by p - 1 interfaces along the z-direction. We shall denote the index

of the interfaces byjk, k = I :iv- 1. Thus rnk -------jk+1--Jk-- l is the number of

grid points in the y-direction in the k-th subdomain. When all the subdomains

are equal in size, we denote this number by m0 _ (m - iv ÷ 1)/iv. The domain de-

composition algorithms first perform subdomain solves (we use the FDS from above)

with zero boundary conditions. Then a set of n independent tridiagonal systems

governing the unknowns on the interfaces are solved, after which the solutions inside
the subdomains are computed by a second subdomain solve. For the coupling of the

unknowns across different interfaces, we need to define the following iv - I by p - 1

tridiagonal matrix: Tj = trid(_j,_,Oj), where _j and)_ are defined in [2]. We shall
- T

use the notation -(k) to denote the vector (ujk-1+1,"', uJk-1) •

Algorithm DD

1. Subdomain Solves: For k = i :iv

11 = wfj., j = jh-1 + 1: jk- 1
-(k) _. _(mk)-1]!_) i-- 1 :n1.2 u._

1.3 uj. = W_j., j = j_-I + 1 : j_ - 1

2. Solve interface system:

2.1 uj_. = JJh* - uO_+l)* - u(j_-a)., k = 1 : iv - 1

2.2 uJb* = WuJi*' k = 1 : iv - 1
r2.3 v (i) - T_-Iv(_), v(_) - (_1ji_, ..., b__i) , i -- 1 :

2.4 _j_, "- Wujh*, k -- 1 : iv - 1

2.5 f(j_+l). - fo,+x)* - uj,., k -- 1 : iv - 1

2.6 fo,-1). -- fO,-x). - uj,., k - 1 : iv - 1

3. Subdomain Solves: For k = 1 :iv

3.1]j. - Wf_., j = jt,-a + 1: jr, - 1

= i= 13.2 _'.i

3.3 u_. = W_., j = j_-i + 1 : j_ - 1

Note that Algorithm DD requires two solves on each subdomain. However, there

are certain redundancies involved. For example, the u variables in Step 2.1 are ob-

tained from the inverse transform in Step 1.3 and are then immediately forward

transformed in Step 2.2. By solving the interface system in the transformed space,

we can eliminate this redundancy. Moreover, with this modification, Step 3.1 can

also be eliminated because the transforms were already computed in Step 1.1. We

denote this more efficient algorithm by DD1 [2]:

Algorithm DD1

1. Subdomaln Solves: For k -- 1 : iv

1.1]_. -- Wf_o, j - j_-x + 1: jk - 1

-(_,) = _,(m_,)-x_) i= l:n1.2 _.i

2. Solve interlace system:

2.1 = k=l:p-1
2.2 fij,. = fj, o - _(j,+;)o _ _(j,_;).,

z3
2.4 f..(j,+;). = f(j,+l). - _j,., k = 1 : lv - 1

2.5 f(j,_;). = f(j,_;). _ _j,., k = 1 : p - 1
3. Subdomain Solves: For k = 1 :p

3.1-(')".i = rnl,) i = 1 : n

3.2 uj. = W_., J=Jl,-l+l:jk--1

3.3 uj,. = W_),., k = 1 :p - 1

k=l:p-1

i=l:n

3 Macrotasking and Microtasking

Macrotasking (MA) is the process of partitioning a program into two or more tasks

at the subroutine level. The granularity of these tasks may be large. The system

software for the CRAY Y-MP provides a library of Fortran-callable subroutines that

implements a basic set of primitive macrotasking functions. These subroutines are

called by a macrotasked program as required to create and synchronize task execution;see [4] for more details.

Microtasking (MI) is the process of partitioning a program into parts at the do-

loop level. The granularity of these parts may be small. Microtasking is specified by

a number of user-supplied directives that appear as comment lines. A preprocessor,
called premult, interprets the directives and then rewrites the code to make micro-

tasking library calls. The addition of the microtasking directives does not reduce the
portability of the code.

4 Implementation and results

We implemented algorithms FDS and DD1 on the Cray Y-MP at NASA Ames Ire-

search Center. At the time of our implementation, the machine had eight processors,
32 Mwords of main memory, and 6.3 nsec clock cycle. Both algorithms were macro-

tasked and microtasked on the Y-MP using two, four, and eight processors.

Algorithm FDS (see Section 2) was multitasked by parallelizing each of the three

steps of the algorithm separately and separating these steps by synchronization points;

two synchronization points were needed. The FFT parts of the algorithm (Steps 1

and 3) were macrotasked by having.ea_a processor computes the sine transforms of

a block of rn/p columns while with microtasking each processor computes the sine

transform of a single column and then asks for another one and so on. This is the

main difference between the two implementations. Each block of n/p rows of the

tridiagonal systems (part 2) were solved by a processor for both implementations.

Multitasking Algorithm DD1 (see Section 2) was quite simple, since the domain

has already been partitioned. The implementation required two synchronization

points: one after Step 1 and the other surrounding Step 2.3; this step was imple-

mented sequentially on ,_ single processor since it runs across n systems sad it is

4

Table 1: Operation Counts
FDS DD DD1

,n FFT(n) _r_o FFT(n) p,,-_oFFT(n)

n TRI(,n) /m TRl(,no) Fa TRl(mo)

m FFT(n) pmo FFT(n)

(p- I) FFT(,_)

. TPa(p- 1)

(p- I) FFT(n)

(p- 1) FFT(n)

r_ TRI(p - 1)

(p- 1) FFT(n)

pro0FFT(n)
pn TRI(m0)
V'",oFFT(n)

/m TRI(m0)

pro0 FFT(n)

very inexpensive. No synchronization point was requiredbetween Steps 2 and 3 since

Steps 2.5 and 2.6 can be performed locallyfor each subdomain. There is no dif-

ference between the two implementations except that differentprimitiveswere used.

The microtasked implementation of DD1 representss case of using small granularity

primitivesto solve a problem with a large granularity.

Fig. 1 through 6 show the execution time (measured in a dedicated environment),

speedup and efficiencyof algorithms FDS and DD1 on the Cray Y-MP using both

mscrotasking (MA) and microtasking (MI) for two square domains, 511 x 511 and

1023 x 1023. Speedup was computed by taking the ratioofthe time to solvethe prob-

lem using one processor to the time to solve the same problem using p processors.

The time to run Algorithm DD1 on s singleprocessor was considered in computing

the speedup for the macrotasked and microtasked versions of the algorithm. Effi-

ciency was determined by taking the ratioof the speedup using p processors to p.

The execution time measure (Fig. 1 and 2) shows that Algorithm FDS isfasterthan

Algorithm DD1 on s singleprocessor. This means that there issome overhead in-

volved in the domain decomposition method. Table I shows operation counts for the

three algorithms: FDS, DD, and DD1. If we compare DD1 with FDS, we can see

that the main overhead with DDI isthe term _n TRI(vno)] which resultedin about

9% overhead compared to FDS. The execution time measure alsoshows that the per-

formance of both macrotasking and microtasking iscomparable for both algorithms.

A speedup ranging between 7.43 and 7.75 and an efficiencyranging between 93% and

97% were obtained for these implementations, as shown in Fig. 3 through 6. These

figuresalso show that the four implementations achieved good performance on the

Cray Y-MP, with the microtasked FDS has a slightadvantage over the other imple-

mentations for the eightprocessor case. A slightimprovement in the performance of

these implementations were noticed for the laxgetproblem (1023 × 1023) because of

a better computation to synchronization ratiofor thisproblem.

,5 Conclusion

Our results show that high speedup is achievable on the Cray Y-MP for the highly

parallel domain decomposition algorithms that are considered. The overhead for the

multitasking primitives are relatively small and are also easy to use. The results for

macrotasking and microtasking are comparable, primarily because the special domain

decomposition algorithms we considered here possess fine grain as well as coarse grain

parallelism. The situation would favor macrotasking if a less parallelizable subdomain

solver is used (as is necessary for more complicated problems). The algorithmic over-

head of Algorithm DD1 over the FDS is small but noticeable, and in fact FDS is the

faster solver, but the situation would also change for more complicated problems (e.g.
irregular domains and more complicated elliptic operators) for which FDS cannot be
directly applied.

References

[11 T. F. CHAN, R. GLOWINSKI, J. PERIAUX AND O. B. WIDLUND, editors,
Domain Decomposition Methods, SIAM, Philadelphia, 1989.

[2] T. F. CHAN AND D. C. RESASCO, A Domain-Decomposed Fast Poisson Solvers

on a Rectangle, SIAM J. Sci. Stat. Comp., Vol. 8, No. 1, 1987, pp. s27 - s42.

[3] T. F. CHAN AND D. C. RESASCO, Hypercube Implementation of Domain-

Decomposed Fast Poisson Solvers, in Hypercube Multiprocessors 87, Mike Heath,
editor, SIAM, 1987.

[4] R. A. FATOOHI, Multitasking a Navier-Stokes Algorithm on the CRAY-_, The
Journal of Supercomputing, Vol. 3, No. 2, 1989, pp. 109 - 124.

[5] R. GLOWINSKI, G. H. GOLUB, G. MEURANT AND J. PERIAUX, editors, Do-

main Decomposition Methods .for Partial Differential Efuationa, SIAM, Philadel-
phia, 1988.

[6] W. D. GRoPP AND D. E. KEYES, Domain Decomposition on Parallel Com-

puters, Research Report YALEU/DCS/RR-723, Dept. of Comp. Sci., Yale Univ.,1989.

6

.5-

U'9

I,=,,=,l

[-.,

Z
0

_D

X

.4

.3

.g

.1

.... r'DS_MA

,\
h \

I \'\\._

\.\
_,.'\

0

F'DS_M/

DD 1_ MA

DD I_ M!

'" .,_,,

..,.._.._.=T._---..--..---.l.-r--.----'---l--r "---__-'-----'-I

1 2 3 4 5 6 7 8

NUMBER OF PROCESSORS

FIG. 1. 511 X 511 doma/n

2.0

E-.

Z
O

><

1.5

1.0

.5-

I .\ ,

\. \

\\

!

2

FDS_MA

FDS_MI

DD I_ MA

DDI_MI

"_. %_

- ._ .. ::...:.:: ._ ..._

I I I I I |

3 4 5 6 7 8

NUMBER OF PROCESSORS

FIG. 2. 1023 X 1023 domain.

7

5

4

3

2

1

FDS_MA

FDS_M/

DD I_MA

DDI_M/

IDEAL SPEEDUP

...":

..-'J_1/"
.'#'s.

.'_'w

..__"

.id"

I I

1
I

2
I I

3 4

NUMBER

5 6

OF PROCESSORS

7 B

FIG. 3. 5! ! X 5! l domo/n.

8

7

6-

C_ 4-
or2

3-

2-

1

1

.,i.k"

FDS_ /,CA ._:,. eS 7

.............F'DS_M/ _.,j¢'_

..... DD I_ /,CA ./_ ¢''_

..... DD l_/4/ .,_:_#_"
/I

IDEAL SPEEDUP _/ /// /f

I I I ! I 1 I

2 3 4 5 6 7 8

NUMBER OF PROCESSORS

FIG. 4. 1023 X 1023 domain.

>-
TD
Z

T.j

b..,
F..T.2

100

98

96

94

92

90

_ % ,s. "°"-.

FDS_MA "-. "-.

FDS_MI " "

4", _¢_ _

"4 ¢}.................... _ "'I:)._

",g........ '"°'...'..,,

..... DD l_ MA

..... DD I_ M/

IDEAL EFFICIENCY

,w

I

1 2

I l

3 4

NUMBER OF

! I

5 6

PROCESSORS

"'....

"..

""-.....

""o

,,.,.

%

,,_ t)

%

o

%0

l

7

l

FIG. 5. 511 X 511 domain.

b_
V

>.,
C.D
Z

k_
k_

100

98

96

94-

92-

90
i

v

•_-'...-..,,.:_,,._.--.._ .,.

• - __.

FDS_MA

I-DS_MI

DD I_ MA

DD I_ MI

-_.o.,

IDEAL EFFICIENCY

I

2
I I I I I I

3 4 5 6 7 8

NUMBER OF PROCESSORS

FIG. 6. 1023 X 1023 domain.

